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ABSTRACT
Flow tubes adjacent to closed magnetic Ðeld lines on the boundaries of streamers can have spreading

factors that change rapidly with height. Numerical models in this thin layer are subject to uncertainties.
Here we use an analytic model of magnetically closed and adjacent open regions to compute the spread-
ing factor close to the closed Ðeld lines and the Ñow on the open Ðeld lines. We are able to recover the
shape of the closed Ðeld region, or helmet, and show the evolution of the helmet under slowly increasing
temperature. We also show why and when stagnation Ñow can occur in the vicinity of the cusp at the
top of the helmet.
Subject headings : MHD È Sun: corona È Sun: magnetic Ðelds

1. INTRODUCTION

We describe a model of slow solar wind Ñow in streamer
boundaries in the solar corona. It is an essentially analytic
model based on early work by Pneuman (1968, hereafter
P68), but applied in a new way and extended. We show new
solutions illustrating the maximum heights of the closed
magnetic Ðeld regions (the helmets) in streamers, the evolu-
tionary changes in streamers under increasing temperature,
and the stagnation Ñow that occurs in the vicinity of the
magnetic cusp at the top of the helmet et al. 1999).(Va� squez
This is a mathematically simple but physically rich model
that can be applied to the analysis of several physical pro-
cesses without the complexity inherent in multidimensional
MHD models.

Slow solar wind originates from coronal streamers in a
way that is not understood but for which several hypotheses
exist. The model described here is based on the hypothesis
that the Ñow geometry adjacent to the helmet plays an
important role in the origin of the slow Ñows. SpeciÐcally,
we examine Ñow between the helmet and the streamer
brightness boundary, so named because this is the bound-
ary between a bright streamer and an adjacent coronal hole.
This sharp boundary in density is often visible to 30 R

_
,

while the last closed Ðeld lines in the helmet never extend
above 4.0 and probably not even above 2.5 (Suess etR

_
R

_al. 1999b ; Wang et al. 1998). Therefore, the brightness
boundary deÐnes a density boundary in expanding solar
wind. Since slow wind is found empirically to be denser
than fast wind, it is logical to conclude that the brightness
boundary is the fast-/slow-wind boundary in the corona.
Figure 1 shows negative and positive images of the corona
during the 1973 solar eclipse. Several brightness boundaries
are visible in a group of overlapping streamers on the west
limb. Boundaries A and B are examples of typical sharp
boundaries. Streamer C is a well-deÐned isolated streamer,
and we show schematic Ðeld lines in C on the right suggest-
ing how the helmet might appear inside the streamer.

In ° 2 we give a physical description of the model and
describe the assumptions made to arrive at this model. In
° 3 we give the corresponding mathematical description of
the model, and in ° 4 we show several di†erent solutions,

Ðrst extending the P68 results and then illustrating stagna-
tion Ñow near the helmet cusp. Sections 5 and 6 contain
discussions of these solutions and, more generally, of the
model itself. Section 7 is a brief summary.

2. ASSUMPTIONS AND PHYSICAL DESCRIPTION OF

THE MODEL

The model is based on the property of streamers that the
ratio of thermal pressure to magnetic pressure, b 4 8np/B2,
is greater than unity (b [ 1) in the helmet above D1.2 R

_(p is pressure, B is magnetic Ðeld strength). We begin by
giving the basis for this result and then go on to show how it
can be applied.

Empirically, b is estimated by measuring temperatures
and densities and using a model to estimate the coronal
magnetic Ðeld strength, which is presently impossible to
measure directly. Li et al. (1998) did this using the Solar and
Heliospheric Observatory Ultraviolet Coronagraph and
Spectrometer (SOHO/UVCS) and Yohkoh Soft X-Ray Tele-
scope (Yohkoh/SXT) measurements. They analyzed a
coronal helmet streamer observed on 1996 July 25, which
was stable from July 22 to 27 July, and derived the tem-
peratures and densities at 1.15 and 1.5 as shown inR

_
,

Table 1. Density was compared with a hydrostatic isother-
mal equilibrium model and a hydrostatic equilibrium plus
thermal conduction model. They concluded that the
streamer was in hydrostatic equilibrium and isothermal
within experimental uncertainty in the closed Ðeld regions.
Li et al. (1998) estimated the magnetic Ðeld strength accord-
ing to the potential Ðeld calculation described in Raymond
et al. (1998). The extrapolation was based on the National
Solar Observatory (NSO)/Kitt Peak synoptic maps of the
magnetic Ðeld for the month of 1996 July, along with the
assumption of a source surface at 2.5 The inferred ÐeldR

_
.

strength was 0.55 G at 1.15 and 0.21 G at 1.50 TheR
_

R
_

.
resulting plasma b was b \ 5 at 1.15 and b \ 3 at 1.50R

_The conclusion was that gas pressure is important inR
_

.
the closed Ðeld region. It can be seen that the magnetic Ðeld
in this streamer falls o† quite rapidly with height, and this is
generally the case for streamers since the Ðeld is a multipole
with closed loops. Because of this, the Ðeld is weaker inside
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FIG. 1.È1973 eclipse images from the west limb (courtesy of G. Newkirk and HAO) showing a complex of overlying streamers. The same image is plotted
in both negative (left) and positive (right). Streamers (e.g., C) are regions in and above closed Ðeld lines, shown schematically in the right panel, above a
photospheric neutral line. Streamer brightness boundaries (e.g., A, B) are extremely sharp and can often be seen to at least 20 As discussed in the text,R

_
.

b [ 1 in and above streamers above some height that is no more than 1.2r0 R
_

.

a helmet than outside, except perhaps at low heights above
an active region (Suess, Gary, & Nerney 1999a ; Gary 2001).

This empirical result is consistent with and, in fact, is
preceded by several numerical simulations that are unani-
mous in predicting streamers with b [ 1 throughout the
closed Ðeld region and upward to several solar radii.
Typical numerical models of global coronal structure today
begin with speciÐed boundary values for the magnetic Ðeld
and plasma variables, a potential magnetic Ðeld in the
corona, and spherically symmetric outÑow. The conÐgu-
ration, which is initially not in equilibrium, is then allowed
to relax in time until it is changing slowly compared to a
coronal expansion time. A well-known early example of this
type of model is that of Steinolfson, Suess, & Wu (1982),
which gives b º 1 from the base upward everywhere within
and above the closed Ðeld region. Modern models repro-
duce coronal temperatures, densities, and Ñow speeds in
both coronal holes and streamers very well using volu-
metric energy and heating sources. Figure 2 illustrates one
such model (Wang et al. 1998) that is typical in terms of the
result that b º 1 in the helmet while b > 1 in the adjacent

TABLE 1

STREAMER ELECTRON TEMPERATURE AND DENSITY

Height 1.15 R
_

1.50 R
_

Temperature . . . . . . 1.9] 106 K 1.6 ] 106 K
Density . . . . . . . . . . . . 1.23] 108 cm~3 1.26] 107 cm~3

NOTE.ÈFrom Li et al 1998.

coronal holeÈa well-established empirical property of
coronal holes.

The results in Figure 2 show that the magnetic Ðeld can
be neglected inside the helmet to order 1 (O[1]) everywhere
above 1.2 and to even lower heights when there are noR

_active regions (Gary 2001). This result was anticipated in
P68, where the magnetic Ðeld inside the helmet had been
neglected in an early streamer model.

FIG. 2.ÈPlasma b distribution in a streamer and adjacent coronal
holes from the two-Ñuid MHD model of Suess et al. (1999c). The radius
scale at the bottom is in solar radii. Magnetic Ðeld lines are shown as
dotted lines.
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The geometry of the P68 model is shown in Figure 3, and
we will use this same geometry here. The conÐguration is
assumed to be axisymmetric and symmetric across the
neutral line down the center of the streamer. There are three
regions : R1, R2, and R3, shown here with cross-sectional
areas and R1 is the region of closed ÐeldA1(r), A2(r), A3(r).lines, the helmet. R2 is adjacent to and below the top of the
helmet. Both R1 and R2 extend upward to the height r

h
,

where the area in R1 goes to zero. R3 is above the top ofr
h
,

the helmet. Area is the area of the base of the helmet atA10and is the sum of the open-outÑow areas atr0º 1 R
_

A20on either side of the streamer. The dashed lines markingr0the outer boundaries of R2 are assumed to be radial so that
and above An importantA1(r)] A2(r)P r2, r

h
, A3(r)P r2.

simpliÐcation is achieved by computing only the average
values of the physical variables over the cross sections A1,and since this reduces the problem to one dimen-A2, A3,sion. We assume that the plasma in R2 and R3 is isother-
mal. We also assume that the plasma in R1 is isothermal
but with a di†erent temperature than in R2 and R3. This is
in keeping with our intention here to focus on the e†ects of
the geometry on Ñow dynamics and not the energetics of the
Ñow. In ° 6 we will discuss relaxing this restriction. Hydro-
static equilibrium is assumed in R1, as is appropriate given
the empirical and multidimensional MHD model results
that b [ 1 throughout the body of and above the helmet.
The base of the model, is deÐned by the height abover0,
which Typically, is a conservativeb1[ 1. r0\ 1.2 R

_choice and is acceptable along a neutral liner0 \ 1.0 R
_with no active regions. The physics of this model is that the

plasma in the helmet is conÐned by the pressure from the
magnetic Ðeld and plasma on adjacent open Ðeld lines in R2
pressing on the boundaries of the streamer. This physical
interpretation of coronal structure also explains the
observed constancy of the radial magnetic Ðeld strength in
the solar wind when it is mapped to constant radius (Suess
& Smith 1996).

FIG. 3.ÈGeometry assumed for the streamer model. A1, A2, and A3 are
described in the text (P68).

The side boundaries of the model, shown by the dashed
lines, were interpreted in P68 to lie at the center of coronal
holes. Here, we modify this interpretation to be the streamer
brightness boundaries. This is based on the results shown in
Figure 2, to which we return now. Four magnetic Ðeld lines
are labeled in Figure 2 : B1, B2, C1, and C2. Two of the Ðeld
lines, C1 and C2, are near the edge of the coronal hole
where Ðelds diverge rapidly at these heights. For compari-
son, the adjacent two Ðeld lines, B1 and B2, nearer the
center of the coronal hole, are also labeled. It can be seen
that B1 and B2 are approximately the same distance apart
as other Ðeld lines at the same height farther toward the
center of the hole. Conversely, C1 and C2 are much farther
apart, illustrating the rapid divergence at the edge of the
hole. In addition, B1 and B2 are seen to be approximately
radial above 1.2 while C1 and C2 are far from radial.R

_
,

This provides a rationale for our assumption that the
boundaries of the model in Figure 3 can be the brightness
boundaries, and the Ñow we model lies in the region labeled
A in this Ðgure. To illustrate that this simpliÐcation can
represent coronal conditions, we note an example of an
approximately radial empirical streamer brightness bound-
ary marked as A in Figure 1. Although the restriction to
radial brightness boundaries is an important limitation to
the model, we will show that the model nevertheless repro-
duces all important two-dimensional MHD model results.
We will also discuss in ° 6 how this restriction can be
relaxed. We note in passing that the region outside the
dashed lines in Figure 3 is coronal hole Ñow, where it is well
known that b > 1.

3. MATHEMATICAL DESCRIPTION OF THE MODEL

To reduce the model to a one-dimensional calculation,
we described above the assumption that only the average
values of the physical variables over the cross sections A1,and will be computed. In this case, the equationsA2, A3describing conditions in Figure 3 are (1) hydrostatic-
pressure balance in R1 with mean ion molecular weight k
and base radius (heliocentric distance) (2) radial momen-r0,tum equation for isothermal Parker wind Ñow with an arbi-
trary geometric spreading factor in R2, (3) conservation of
mass Ñux in R2 and are the magnetic Ðeld strength(B20 A20and cross-sectional area at (5) conservation of total arear0),(6) pressure balance on the interface betweenA1(r)] A2(r),R1 and R2, and (7) in R3 the Ñow is assumed to be radial.
The equations describing the Ñow in R3 are just the isother-
mal Parker wind equations. This gives

N1 \ N10 exp
C
[ kG M

_
m

p
r0 kT1

A
1 [ r0

r
BD

, (1)

m
p
N2
A
V2

dV2
dr

]G M
_

r2
B

\ [ kT2
k

dN2
dr

, (2)

N2 V2A2 \ N20 V20A20 , (3)

B2A2\ B20 A20 , (4)

A1] A2\ r2
r02

(A10] A20) , (5)

2kN1 T1\ 2kN2 T2] 1
8n

B22 , (6)
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m
p
N3
A
V3

dV3
dr

]G M
_

r2
B

\ [ kT3
k

dN3
dr

, (7)

N3 V3A3 \ N30 V30A30 , (8)

A3\ r2
r
h
2 A30 , (9)

and the dimension-p2\ 2N2 kT2, p3\ 2N3 kT3, T2\ T3,less parameters are temperature ratio,q\T1/T2 \ the
area ratio,( \ (kGM

_
m

p
)/(r0 kT1), R \ A20/A10 \ the

and densityb20\ 2N20 kT2/(B202 /8n), g \N10/N20 \ the
ratio. The subscripts indicate to which region the variables
refer. Equation (2) can be integrated and the equations
solved analytically, with the requirement that the solution
for pass through the critical point smoothly from sub-V2sonic Ñow close to the Sun to supersonic Ñow far from the
Sun. In practice, the solution is generally found more easily
by direct numerical integration of equations (2) and (7) in
R2 and R3.

An important parameter in this model is the area ratio,
R. This is, again, the ratio of the base area in R2, including
both sides of the helmet, to the base area in R1. Solutions
can be found for a range that is at least as large as
0.01¹ R ¹ 100, depending on the other physical param-
eters. The ratio R > 1 corresponds to a vanishingly small
region R2, while R ? 1 corresponds to a vanishingly small
helmet and essentially radial Ñow. The side boundaries to
R2 can be anywhere so, guided by an equatorial streamer
belt like that depicted in Figure 3, we deÐne the brightness
boundary to start at the polar angle This is illustrated inË1.Figure 4, where the base of R2 is shown to start at TheË1.boundary between R1 and R2 is given by the angle Ë(r) and

Given the transequatorial symmetry of theË(r0)4 Ë0.model, Ë(r
h
)\ 90¡.

It is easier to work with dimensionless equations so equa-
tions (1)È(8) are scaled such that x \ r/r0, m1 \N1/N10,m2\ N2/N20, m3\ N3/N30, u2\ V2/(2kT2/km

p
)1@2, u3\
andV3/(2kT3/km

p
)1@2, b2\ B2/B20, y1\A1/A10, y2\

In addition to the above, the dimensionless param-A2/A20.eter appears where The meanu0 u0\ V20/[2kT2/(km
p
)]1@2.

molecular weight in terms of the fraction of alpha particles,
(assuming a plasma of only alpha particles, elec-d 4 na/nptrons, and protons), is given by k \ (1] 4d)/(2 ] 3d). The

FIG. 4.ÈDeÐnitions of the angles Ë(r), andË0, Ë1

scaled equations are

m1\ exp
C
[(

A
1 [ 1

x
BD

, (10)

m2 y2 u2\ u0 , (11)

b2 y2\ 1 , (12)

u22] ln (m2) ] q(
A
1 [ 1

x
B

\ u02 , (13)

y1] Ry2\ (1] R)x2 , (14)

gqm1\ m2] b22
b20

, (15)

u32] ln (m3) ] q(
A
1 [ 1

x
B

\ K1 , (16)

m3 u3 y3\ K2 , (17)

y3\ y30 x2 . (18)

Note that evaluating equation (15) at x \ 1 gives gq\ 1
which can be used to eliminate g from further] 1/b20,appearance in the analysis. The quantity is a derivedy1quantity that appears only in equation (14). Equations (13)

and (16) are the integrated forms of equations (2) and (7).
The di†erential forms are

2u2
du2
dx

] 1
m2

dm2
dx

] (q
1
x2\ 0 , (19)

2u3
du3
dx

] 1
m3

dm3
dx

] (q
1
x2\ 0 . (20)

The solution to equations (10)È(18) in the particular case
q\ 1 is described in P68. We outline that solution here with
the addition of the new analytic expressions for Inu0.general, the Ñow begins subsonically at and becomesr0supersonic somewhere above It was shown in P68 thatr0.
when the temperatures in R1 and R2 are the same (q\ 1),
then the critical point (where the Ñow becomesx

csupersonic) always lies in R3, and The generalx
h
¹ x

c
/2.

extension we make to those solutions is to fully relax the
restriction that q\ 1. We will begin with cases for which x

clies in R3 and there is only a single critical point. Other
cases will be discussed in ° 5.

3.1. Mathematical Solution in R3
The Ñow in R3 is simple, spherical, isothermal Parker

Ñow for which an analytic solution can be written. This
solution has to be matched to the solution in R2. At thex

h
,

boundary between R2 and R3, the variables must be contin-
uous, which is guaranteed by setting

y2(xh
) \ y3(xh

) 4 y
h
, (21a)

m2(xh
) \ m3(xh

) 4 m
h

, (21b)

u2(xh
) \ u3(xh

) 4 u
h
. (21c)

This immediately gives, from equations (14) and (18), the
result that Next, we look for the critical-y

h
\ (1 ] 1/R)x

h
2.

point criteria in R3. First, solve equations (16), (17), and (18)
for to givem

h
m

h
\ u0

u
h
(1] 1/R)x

h
2 . (22)
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Substitute this into equation (16) :

u32] ln
C K2
u3(1] 1/R)x2

D
] (q

A
1 [ 1

x
B

\ K1 . (23)

Eliminating and evaluating atK2 x
h
,

u32] ln
Am

h
u
h
x
h
2

u3 x2
B

] (q
A
1 [ 1

x
B

\ K1

\ u
h
2] ln (m

h
)] f

h
q , (24)

where

f4 (
A
1 [ 1

x
B

, (25)

f
h
\ (

A
1 [ 1

x
h

B
. (26)

Equation (24) simpliÐes to

u32 [ 1
2

ln (u32)\ ln
Ax2
x
h
2
B

[ 1
2

ln (u
h
2)] u

h
2] (q

A1
x

[ 1
x
h

B
.

(27)

The derivative of equation (27) gives the equation deÐning
the critical points :

du3
dx
A
2u3[ 1

u3

B
\ 1

x
A
2 [ (q

x
B

. (28)

The right-hand side of equation (28) goes through zero at
the critical point where

x3c \(q
2

. (29)

At the critical point the left-hand side must also be zero.
This can happen by either the velocity going through an
extremum or the quantity in the brackets(du3/dx \ 0)
going through zero. The solution in R3 is monotonic
(Parker 1963), so the latter must be the case, and at x3c,

u3c2 \ 12 . (30)

Equations (29) and (30) describe the critical-point condi-
tions in R3 so long as From equation (29),x3c [x

h
. x3cdepends only on and The physical statement of thisr0 k/T2.is that there will be a critical point in R3 as long as the Ñow

is not already supersonic when it enters R3 at Equationx
h
.

(27) can now be evaluated at to give the relationshipx3cbetween andu
h

x
h
:

2u
h
2[ ln (u

h
2)\ 2

(q
x
h

[ 3 ] ln
C
32
A x

h
(q
B4D

. (31)

3.2. Mathematical Solution in R2
Equations (11) and (13) combine to eliminate and givem2

y2\ u0
u2

exp
C
u22[ u02] (q

A
1 [ 1

x
BD

. (32)

At the area in R1 goes to zero, so that from equationx \ x
h
,

(14),

y2(xh
)4 y

h
\
A
1 ] 1

R

B
x
h
2 . (33)

Using equations (32) and (33) at givesx
h

A
1 ] 1

R

B
x
h
2\ u0

u
h

exp
C
u
h
2[ u02] (q

A
1 [ 1

x
h

BD
. (34)

This equation can be manipulated to derive an equation for
that depends only on the physical parameters, not onu0any of the other derived parameters, and satisÐes the

requirements for continuity with the solution in R3. Begin
by taking the logarithm of equation (34) to give

u
h
2[ u02] (q

A
1 [ 1

x
h

B
\ ln

Cu
h

u0
x
h
2
A
1 ] 1

R

BD
. (35)

To make this more compact, use the notation

z
h
4

x
h

(q
, (36a)

j 4 (2q2
A
1 ] 1

R

B
. (36b)

Using these in equation (35) and combining that with equa-
tion (31) gives

u02[ ln (u0) \ (q[ 32 ] 52 ln (2)[ ln (j)4 C , (37)

where the constant, C, depends only on the physical param-
eters of the problem, including the area ratio, R. Equation
(37) is a new equation that was not obtained in P68. It is a
transcendental equation for only that depends on theu0solution in R3, because equation (31) was used in its deriva-
tion. Thus, it is the solution for the velocity at the base ofu0,the model, which is required for the solution to pass
smoothly from subsonic Ñow at the base to supersonic Ñow
far from the Sun when the critical point is in R3. Generally,
equation (37) has two real roots corresponding to subsonic
and supersonic injection of plasma at the base of the
corona. We focus on the subsonic root.

The equation for is derived by eliminating by usingu2 m2equation (13) in equation (15) to give

1 ] 1
b20

\ exp
C
u
o
2[ u22] (

A
1 [ 1

x
B
(1[ q)

D

] 1
b20

u22
u02

exp
C
2(u02[ u22) ] (

A
1 [ 1

x
B
(1 [ 2q)

D
,

(38)

which is equation (14) in P68. When equation (38) is di†er-
entiated it gives

du2
dx
G
u02 exp

C
u22[ u02] (q

A
1 [ 1

x
BD

[ 1
b20

(1 [ 2u22)
H

\ (
2u2 x2

G u22
b20

(1[ 2q) [ u02(q[ 1)

] exp
C
u22[ u02 ](q

A
1 [ 1

x
BDH

. (39)

The physical solution is found by numerically integrating
the di†erential forms of the equations (19) and (20) rather
than solving the transcendental integrated equations for the
appropriate roots. The height of the helmet, is deter-x

h
,

mined when By directly solving for the continuousy1] 0.
solution from subsonic Ñow at the base to supersonic Ñow



1280 SUESS & NERNEY Vol. 565

far from the Sun, we have bypassed alternative solution
branches. The solution space for these equations is analo-
gous to the solution space for the original Parker equations,
with the potential for additional complexity because of the
non-r2 geometric expansion in R2 (Kopp & Holzer 1976 ;
Leer & Holzer 1990).

The derivation here is simple and concise. However, we
have avoided spending time dealing with many real com-
plexities that were discussed in P68. Our goal is instead to
go directly to illustrating two important extensions to the
results in P68. The Ðrst is that the solutions shown above
are for a major generalization to P68 that allows usqD 1,
to examine a much larger class of Ñow regimes than could
be achieved by the q\ 1 restriction. The second is an exten-
sion to the speciÐc results described in P68 for which an
upper bound to the permissible temperature in streamers
was derived. We turn to this second extension now.

3.3. Mathematical Solution for q\ 1
The q\ 1 solutions were extensively discussed in P68,

and we only summarize some of the results here. First,
equation (39) reduces to equation (16) in P68 in the limit
q\ 1 ; i.e.,

du2
dx
G
u02 exp

C
u22[ u02] (q

A
1 [ 1

x
BD

[ 1
b20

(1[ 2u22)
H

\ [ (u2
2x2b20

. (40)

First, note that corresponds to the Ñow velocityu22\ 12being the speed of sound, the same as equation (30) in R3. If
the left-hand side of equation (40) is positive. Theu22\ 12,right-hand side, however, is always negative. Therefore, the

equation can be satisÐed only if is negative. So, thedu2/dx
q\ 1 case exhibits only one critical point that must lie in
R3. We seek solutions for which the speed increases from
low values near to supersonic Ñow in R3. Therefore, ther0Ñow adjacent to the helmet is subsonic, the critical point lies
in R3 when q\ 1, and the assumption implicit in ° 3.1 is
valid.

It was also shown in P68 that in this case so thex
h
¹ (/4,

maximum possible extension of the closed magnetic Ðeld
helmet region is one-half the distance to the critical point
in R3. This occurs for a speciÐc temperature,

and it was shown that at this tem-T1,max(Rmax, (min),perature

12(min[ 2 ln(min\ ln (1] 1/Rmax)] 2 [ 4 ln 2 , (41)

where it is to be noted that is a minimum because(min( P 1/T1.In P68 this was interpreted as the maximum temperature
above which the streamer cannot exist with an internal
helmet of closed hydrostatic plasma. The temperature was
so high that the gas was simply too hot to be held stationary
by the surrounding pinch of the magnetic Ðeld in R2. This
interpretation, however, did not take into account the point
that R is a physical parameter that might also be expected
to vary as T increases. This is addressed below.

3.4. Solution Isomorphism
Nondimensional solutions can be used to generate many

dimensional solutions, but there is also an interesting iso-
morphism that can be used to generate many solutions from
one nondimensional solution. To show this, Ðx (, andb20,

the subsonic root from equation (37), all for a givenu0, r0.
Because ( depends only on the ratio changing k ork/T1, T1while keeping the ratio constant allows the generation of
other solutions without solving the nondimensional equa-
tions again. Further, depends only on R and Equa-u0 k/T2.tion (37) shows that for a Ðxed value of and a speciÐedu0value of ((q\ constant), R can be calculated suchk/T2that does not change. Finally, a Ðxed value of impliesu0 b20that does not change. Choosing allowsN20 T2/B202 N20/B202the calculation of so that is constant. This deter-T2 b20mines k (because is known), which in turn determinesk/T2from ( and k. We have thus generated a new solutionT1with di†erent R, k, and from the original non-T2, T1dimensional solution. Aside from comparing our results
with the original calculation in P68, which used k \ 0.69,
we have little interest in generating new solutions with dif-
ferent values of k. Therefore, keeping k equal to, e.g., 0.56,
the isomorphism is used by specifying and then calcu-T2lating R such that is unchanged. Then the value ofu0is calculated from both and the original value ofN20/B202 T2Finally, remains unchanged from the original solu-b20. T1tion. This can be summarized by

( \ ((k/T1) , (42a)

u0 \ u0(R, k/T2) , (42b)

b20 \ b20(N20 T2/B202 ) . (42c)

We illustrate the use of this isomorphism by using the
P68 solution with k \ 0.69 and generating the new solution
with k \ 0.56. (Eq. [6], the pressure-balance condition, was
missing a factor of 2 in P68.) The parameters in P68 are

cm~3, K, andN20 \ 2 ] 108 T1\ T2\ 1.5] 106 B20 \
G. We take G. Then and0.5È2 B20\ 2 T1 T2\ 1.22 ] 106

K, which is decreased by the ratio of Becauseknew/kold. koldis the same value as in P68, equation (42b) requires the same
value of R (unspeciÐed). Then G, so that isB20\ 1.80 b20still 0.52. Only and change. The non-T1 \T2 B20dimensional solution of equations (10)È(18) remains the
same, but dimensional solutions change through the scaling
ratios.

3.5. Character of the Solution Space
The general solution space can be plotted for three of the

four variables, R, and for Ðxed k \ 0.56 andT1, T2, b20, r0,that determine the solution. We have chosen to Ðx andb20plot the solution of equation (38) evaluated at Wex
h
.

neglect compared to so that equation (38)Â u02[ u
h
2 Â u3c2may be written as

u
h
2

u02
\ (1] b20) exp [ f (2q[ 1)][ b20 exp ( fq) . (43)

This is the new version of equation (25) in P68. Now equa-
tion (34) may be used to eliminate from equation (38),u

h
2/u02giving

u
h

u0

A
1 ] 1

R
B
x
h
2\ exp (qf

h
) , (44)

so

(1] b20) exp [ f (q[ 1)][ b20\ exp ( fq)
[x

h
4(1] 1/R)2] . (45)
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FIG. 5.ÈSolution space from eq. (45) for k \ 0.56 and T1\ 1.5] 106
K. In this plot the q-axis corresponds to varying since is held Ðxed.T2, T1The helmet height, is plotted vs. and q. Each contour onx

h
, R \ A20/A10the surface is for a constant R, constant q, or constant the non-x

h
,

dimensional helmet height. Helmets with require R D 1 whenx
h
Z 1.5 R

_The solution assumesq\T1/T2[ 0.5. ou02[ u
h
2o> u3c2 .

Figure 5 is a plot of the solution to equation (45) when
and K, where it should beb20\ 0.26 T1\ 1.5] 106

remembered that although the plot for a varying q\T1/T2,only is actually varying. The saddle surface shows thatT2

FIG. 6.ÈSolution space from eq. (45) for k \ 0.56 and T2\ 1.5] 106
K. Opposite to Fig. 5, the q-axis now corresponds to varying since isT1, T2held Ðxed. The streamer height, is plotted vs. and q.x

h
, R \ A20/A10Helmets with only exist for qD 1. There is little variation inx

h
Z 1.5 R

_the solution space for varying R. The solution assumes ou02[ u
h
2o> u3c2 .

the solution space is constrained to approximately q[ 0.5
for tall helmets to exist Tall helmets also require(x

h
[ 1.5).

R D 1. As we move down the saddle, tall helmets exist only
for small R, so that these helmets are both tall and wide.
Values of R [ 1.5 generally produce short helmets, indicat-
ing that these helmets are both narrow and short.

Figure 6 shows the solution space when KT2\ 1.5] 106
and is allowed to vary. Clearly, tall helmets require aT1narrow range for where qD 1. Similar solution-spaceT1plots (not shown) for 1.7 ] 106, andT2\ 1.3 ] 106,
1.8] 106 K indicate that the upper bound for q decreases
from to less than 1 as increases to 1.8 ] 106. We[1.2 T2also examined the solution space for 10[b20 [ 0.01, T2\

K, and R \ 0.5, and found the same requirement1.5] 106
that qD 1 for helmets higher than D1.5 and no tallR

_
,

helmets at all for no matter what the value of R.q[ 0.6

4. PHYSICAL SOLUTIONS

To illustrate solutions to equations (1)È(9), we begin by
deÐning a set of physical parameters. We start with fromË1Figure 4, the angular half-width of the streamer base at r0.Here we uniformly take If we consider a quietË1\ 70¡.
streamer, we can select cm, G,r0\ 6.96] 1010 B20\ 2.0
and cm~3. Given and these conditions, weN20\ 108 Ë1can compute in terms of Ë(r) for di†erent values ofA1(r) T1and Consider Ðrst the simple case described in ° 3.3,T2.q\ 1. We also initially use k \ 0.69 (17% alpha particles) to
compare with P68, who also used that value, although a
better choice for the solar wind that we will use below is
k \ 0.56 (5% alpha particles ; Aellig, Lazarus, & Steinberg
2001).

4.1. q\ 1
Figure 7a shows the variation of with height for aA1(r)series of q\ 1 solutions. The solutions are for a range in T1when R \ 0.5. For visualization, what is actually shown is a

polar plot of Ë(r) from Figure 4, computed as follows :

y1(r) 4 A1(r)/A10 , (46a)

y2(r) 4 A2(r)/A20 , (46b)

Ë(r) \ arccos Mcos Ë1/[1] Ry2(r)/y1(r)]N . (46c)

The helmet shapes are domed for lower temperatures
and become sharply cusped at higher temperatures. More-
over, there is the interesting property noted in P68 that
there is no solution for K for R \ 0.5. AsT1[ 1.62] 106
we have noted elsewhere (Suess & Nerney 1999), this does
not necessarily imply a lack of solution, but rather that the
streamer begins to shrink in cross section at the base at
higher temperatures. This shrinkage corresponds to an
increase in R, and at some Ðnite temperature it is found that
the helmet completely disappears, while at the same time,

This is illustrated in Figure 7b. Finally, above ax
h
] 1.

temperature of about 3.5 ] 106 K, there truly is no solution.
This interpretation extends the results in P68 to give the
complete evolutionary track of a helmet under increasing
temperature, from a broad helmet of zero height for low
temperatures to a maximal-height helmet for T1D 1.62
] 106 K to a helmet of zero height and width at
T D 3.5] 106 K. The evolutionary track is shown in
Figure 8, starting with a Ðxed-area ratio and then increasing
the area ratio once the maximum temperature is reached for
the initial value of R. However, this is a rather limited
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FIG. 7.È(a) Variation of helmet shape as a function of temperature for a Ðxed-area ratio R \ 0.5 for temperatures up to the maximum value for[A1(r)] T1
R \ 0.5, K. (b) Variation of helmet shape as a function of temperature for K. The other physical parameters for this exampleT1\ 1.62] 106 T1[ 1.62] 106
are G, cm~3.B20\ 2.0 N20\ 108

example because q\ 1. In ° 4.2 we will tabulate maximum
temperatures and heights for a broader range of cases.

As we have shown elsewhere (Suess et al. 1999b), any
polytropic solar wind model with a volumetric heat source
will have monotonically increasing temperature in the
helmet because there is no mechanism for removing the
energy input in the absence of an outÑow. If the tem-
perature increase is slow enough so the temperature
increase is slow compared to the characteristic times for the
transit of sound and fast mode waves through R1 and R2 in
Figure 3, then the evolutional track shown in Figure 8
reproduces the phenomenon we have called streamer
evaporation.

Figure 9 shows the Ñow speed, spreading factor, and
number density for the solutions in Figure 7a. The curves
are labeled by their temperatures, corresponding to the four
helmet-shape solutions. The spreading factor, f (r), is deÐned

FIG. 8.ÈMaximum temperature for given area ratio, R, and for q\ 1,
above which no closed helmet solution exists. The gray evolutionary track
is described in the text.

by

A2(r) \ A20
r2
r02

f (r) o
r0yryrh

, (47a)

f (r) o
rzrh

\ A30
A20

\ f (r
h
) . (47b)

The Ñow speed in Figure 9 increases monotonically and
continuously from the base out past the critical point, inr3c,R3, where the Ñow becomes supersonic. As described in
° 3.1, there is only one critical point when q\ 1, and it
always lies in R3. There is a discontinuity in the slope of
both the Ñow speed and the number density at that is notr

heasily visible here but which will become more apparent in
the solutions shown below for Also plotted is the ÑowqD 1.
speed for k \ 0.56 to show that it is important in these
Parker-type solutions to select a realistic value for the
amount of helium present. Changing from k \ 0.69, corre-
sponding to 17% helium, to k \ 0.56 results in an approx-
imate factor of 2 increase in the Ñow speed at 2.0 R

_
.

The spreading factor in Figure 9 increases up to and isr
hconstant above because of the assumption thatr

h
A3(r)PThe discontinuity in slope for f (r) is the reason there is ar2.

discontinuity in slope for the Ñow speed and density. The
four cases illustrated here all have R \ 0.5, so the value of
f (r) in R3 is the same for each case. The number density in
Figure 9 has the same starting value in each case. Therefore,
as T increases, the Ñow speed at the base, increasesu0,
monotonically and the mass Ñux correspondingly increases.
Thus, the density at any given height also increases mono-
tonically with temperature.

Finally, a peculiarity of these solutions, dependent on the
fact that q\ 1, is that they are independent of the value of

This is because which is e†ectively a dependentB20. N10,variable, changes with through equation (6) to maintainB20the same shape for the helmet under changing ThisB20.
property of the model is a consequence of the restriction to
a radial brightness boundary, and ways to relax the limi-
tation will be discussed further in ° 6.
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FIG. 9.ÈFlow speed, spreading factor, and number density for the four
solutions shown in Fig. 7a. q\ 1, so the temperatures are for R1 as well as
R2 and R3. The other parameters are listed in the text and k \ 0.69. Also
shown is the Ñow speed for k \ 0.56, T \ 1.5] 106 K.

These solutions serve to introduce the general properties
of solutions to equations (1)È(9), including the following : (1)
Helmet shapes like those found both numerically and
empirically are reproduced by this simple model. (2) The
predicted heights of helmets are similar to those predicted
in numerical studies. (3) The behavior of the helmet
geometry under changing temperature is similar to that in
numerical studies (Steinolfson et al. 1982).

and Stagnation Flow at the Cusp4.2. qD 1
The results in ° 4.1 are limited by the restriction to q\ 1,

irrespective of the assumption of an isothermal gas in R1
and R2. Here we relax this restriction and derive an inter-
esting stagnation Ñow at the cusp. The mathematics for

has been shown above. The full set of parameters,qD 1
even for the simple physical example described here, is the
set R, and It is impossible to show aT1, T2, N20, B 20, r0.full survey of parameter space, and we show instead two sets
of three solutions, each of which illustrate many of the inter-
esting features. The Ðrst set is for varying and the secondT1is for varying all other parameters are held constant,T2 ;

TABLE 2

TEMPERATURES FOR SOLUTIONS AÈE

Case T1 T2
A . . . . . . 1.1] 106 K 2.1] 106 K
B . . . . . . 1.3] 106 K 2.1] 106 K
C . . . . . . 1.5] 106 K 2.1] 106 K
D . . . . . . 1.1] 106 K 1.7] 106 K
E . . . . . . 1.1] 106 K 1.3] 106 K

NOTE.ÈTemperatures used for comput-
ing solutions AÈE that are discussed in the
text and illustrated in Figs. 10È13.

with R \ 0.4, k \ 0.56, andr0\ 1 R
_

, N20\ 1.25] 108
cm~3. The values of for the Ðrst set of three examples areT1cases A, B, and C in Table 2, while the values of for theT2second set of three examples are cases C, D, and E in Table
2. Note that the two sets share case C.

Figure 10 shows a set of solutions for cases A, B, and C in
which varies. Because and R are the same for all theseT1 T2cases, the Ñow in R3 does not change and the velocity pro-
Ðles all converge to various points on the same R3 proÐle at
their individual values of The critical point in R3 for allr

h
.

three solutions is marked by the diamond at 3.077 TheR
_

.
helmet shapes are all more domed than the examples shown
in Figure 7, and this is seen to have an immediate conse-
quence in the velocity proÐle. All three examples exhibit a
maximum in Ñow speed below the top of the helmet. This is

FIG. 10.ÈHelmet shapes, Ñow speeds, spreading factors, and number
densities for the three cases A, B, and C from Table 2 and discussed in the
text. The Ðlled diamond in the Ñow-speed panel shows the location of the
critical point in R3 for all three cases.
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a type of stagnation Ñow that has been found earlier in a
two-dimensional MHD simulation by et al. (1999).Va� squez
Here, we recover the local peak in speed below the helmet
top in this much simpler one-dimensional simulation. These
three examples all have the same and R, so the ÑowT2speed is also the same in A, B, and C. The only thing thatu0is changing the Ñow in R2 is the changing shape of the
helmet in response to the changing pressure inside R1 as T1is varied. Since R does not change, the width of the helmet
is unchanging and the value of the spreading factor, f (r), is
the same in R3 for these three examples. The density
changes little between the three examples. This is because
the Ñow speed is quite small in R2, maximizing at about 75
km s~1 in C, so the density is primarily determined by the
gravitational scale height. The physics of the local velocity
peak in R2 is that the rapid increase in f (r) causes deceler-
ation of the subsonic Ñow, just as occurs for subsonic Ñow
in a rocket nozzle. The Ðeld lines diverge so rapidly in these
three examples that the velocity begins to decrease, even-
tually converging to the velocity proÐle for R3. The
maximum value of is determined fromf (r)\ f (r

h
)

R \ A20/A10 , (48a)

f (r
h
)\ A20] A10 (48b)

\ 1 ] 1/R . (48c)

Therefore, in all three cases A, B, and C, Thef (r
h
)\ 3.5.

interaction between f (r) and the velocity proÐle varies,
however, depending on the magnitude of the velocity where
f (r) is most rapidly changing, moving the peak speed in R2
from the base in A outward to 1.4 in C.R

_Solution C in Figure 10 is roughly that for the maximum
temperature that can be attained using the one-dimensional
model, which in this case is not the maximum temperature
described in connection with Figure 8. The reason for the
maximum here is suggested by the dashed lines in the Ñow-
speed and helmet-shape panels. When K,T1[ 1.5] 106
the Ñow becomes supersonic in R2. When this happens,
there must be a shock in the velocity proÐle in R2 to match
smoothly with the Ñow in R3. We schematically show this
phenomenon here because it is easiest to understand for the
case of constant As the Ñow accelerates around theT2.
helmet there is always the possibility that it becomes super-
sonic. When this happens, Ñow information from beyond
the critical point in R2 can no longer reach In this case, ar0.standing shock must occur somewhere in R2, and the loca-
tion of the shock is determined by the jump conditions
leading to a Ñow proÐle that matches onto the Ñow in R3.
This is similar to the procedure described in the case of
multiple critical-point solutions by Kopp & Holzer (1976).
We could solve for these solutions but they introduce a
phenomenon that is probably not physically realistic. The
pressure undergoes a discontinuous increase with increas-
ing radius at the shock that, by equation (6), means theA1(r)and must also undergo discontinuous changes in theA2(r)way suggested by the dashed shape in the top panel of
Figure 10. This discontinuity in the area almost certainly
would not be realized physically in such a dramatic way.
Instead, there would probably be a discontinuous change in
the inclination of the helmet boundary at the location of a
standing shock. We discuss this phenomenon further in ° 6.

Figure 11 shows the set of solutions for cases A, D, and E
in Table 2 that have varying while and R are heldT2 T1

FIG. 11.ÈHelmet shapes, Ñow speeds, spreading factors, and number
densities for the three cases A, D, and E from Table 2 and discussed in the
text.

constant. Case A is the same as A in Figure 10, so we have
retained the same label. Here the well-known dependence of

on in polytropic and isothermal wind models isu0 T2clearly exhibited. Also, these solutions have di†erent pro-
Ðles in R3. The critical point for A is shown by the diamond.
The critical points for D and E are beyond 3.5 In theseR

_
.

examples, the helmet is slightly more domed than the exam-
ples in Figure 10. The consequence is that we have not been
able to follow these solutions to as large of values for asr

hfor those in Figure 10. For K the Ñow againT2[ 2.1] 106
becomes supersonic in R2 and a standing shock forms, so
we have ended the series of solutions with example E. The
spreading functions for these three examples again all maxi-
mize at because R \ 0.4. The gradients in f (r) aref (r

h
) \ 3.5

slightly larger inside than in A, B, and C as a consequencer
hof the more domed shape of the helmets. The density pro-

Ðles show a larger spread here because the temperature in
R3 is changing.

Figure 11 shows that the stagnation Ñow around the
streamer is most prominent when there are large Ñow
speeds at low heights in R2. The solutions are closely
coupled to the shape of the streamer, however, which is
responding to the changing ambient density near Sincer

h
.

these solutions are for constant decreasing andN20, T2 u0results in lowering the density everywhere in R2 and there-
fore in raising r

h
.

Before leaving this section, we brieÑy note that all of the
solutions shown here have values for There isr

h
\ 2.0 R

_
.

no case in which we have been able to Ðnd inr
h
[ 3.0 R

_the absence of a standing shock. Figures 5 and 6 suggest
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such solutions may exist in theory but apparently this is for
parameters far from typical for the solar corona. This has
interesting implications for the Sun. Numerical simulations
seem to indicate that the helmet can sometimes extend
above 3.0 but these may be numerical artifacts and weR

_
,

trust the general results from this quasi-analytic model for
this purpose. The observation that streamers extend much
higher than this merely emphasizes that the closed helmet
extends only partway up the streamer, and it would be a
mistake to equate the two. Therefore, we conclude that the
helmet is normally only a small part of the streamer, and
that outÑow is the most common state in the Ðeld of view of
the Large Angle and Spectrometric Coronagraph Experi-
ment (LASCO/C2) above 2.0 R

_
.

4.3. b
We have made the assumption that b [ 1 in R1, and it is

possible to consider the self-consistency of this assumption.
There is no explicit magnetic Ðeld in R1, so it is impossible
to strictly evaluate the self-consistency. Instead, we need to
make an estimate for the magnitude of and ToB10 B1.begin, take G at 1.15 from the case analyzedB1\ 0.55 R

_by Li et al. (1998). With this choice, we Ðnd b [ 3 for all the
examples shown in Table 2, where derived from equa-N1(r),tion (6), ranges from 1.3 ] 108 to 1.7 ] 108 cm~3 at this
height. These densities are all slightly larger than the density
quoted by Li et al. at 1.15 but by no more than 50%. If,R

_
,

instead, we take G at the same asB10 \ 2 r0 \ 1 R
_

, B20,
we Ðnd b \ 1.3È1.4 at the base of R1, where rangesN10between 5.6] 108 and 7.6 ] 108 cm~3. The model results
illustrated in Figure 2 and discussed in Suess et al. (1999a)
indicate b is always above this base value in the helmet, so
these base values are also minimum values. The results for
the base values are tabulated in Table 3. If we increase B10to 4 G, perhaps a more realistic value given recent empirical
results, and redo the calculations for case E, then b10\ 1.1,
still preserving the validity of our assumption. From these
numbers, we conclude that b [ 1 in R1 is a physically rea-
sonable assumption that is self-consistent with this one-
dimensional model and the examples shown here.

Turning to the other regions shown in Figure 2, no
explicit assumption has been made for b in R2 or R3. We

TABLE 3

PLASMA b IN R1

Case Density b

1.0 R
_

, 2.0 G

A . . . . . . 7.6 ] 108 cm~3 1.5
D . . . . . . 7.2] 108 cm~3 1.4
E . . . . . . 6.7] 108 cm~3 1.3

1.15 R
_

, 0.55 G

A . . . . . . 1.5 ] 108 cm~3 3.8
D . . . . . . 1.4] 108 cm~3 3.6
E . . . . . . 1.3] 108 cm~3 3.4

NOTE.ÈPlasma b in R1 at the
base and at 1.15 The ÐeldR

_
.

strength at the base is chosen to be
the same as while that at 1.15B20,is the same as used in Li et al.R

_1998. The temperature in R1 is
1.1] 106 K in all cases.

FIG. 12.ÈPlasma b (solid lines) in regions R2 and R3 for cases A, D,
and E from Table 2, plotted along with the Ñow speeds for the same cases
for comparison.

show here that it would not be appropriate to make such an
assumption. Figure 12 shows b in R2 and R3 for the three
examples A, D, and E, along with the associated Ñow
speeds. The high-density, high Ñow speed solutionhigh-T2,A leads to b [ 1 everywhere in R2 and R3 except very near
the base. Conversely, the low-density, low Ñowlow-T2,speed solution E leads to b \ 1 everywhere in R2 and R3.

The densities in E are still a little higher than the empiri-
cal densities shown in Table 1, so it might be concluded that

in the boundary Ñow between the helmet andb2\O(1)
brightness boundaries of streamers. The solutions shown
here, however, are for isothermal Ñow that does not couple
density at the base to the Ñow speed. In addition, we have
made no e†ort to display sets of solutions with constant
mass Ñux, as might be preferred for comparison with solar
wind data. Without putting more physics into the model
and undertaking an extensive survey of solution space, it is
difficult to make any speciÐc conclusions about the order of
magnitude of b in R2 based on the present model. It can
only be said that plausible solutions can be found that have
both andb2(r) \ 1 b2(r) [ 1.

Conversely, outside the brightness boundary, where there
is typical low-density coronal hole Ñow, it is already well
known that b > 1. Later we will invoke this result when
discussing how to relax the restriction shown in Figure 2 to
a radial brightness boundary.

4.4. Expansion T ime and Gravitational Settling
It has been suggested (Raymond et al. 1998) that gravita-

tional settling produces an overall depletion of heavy ele-
ments at large heights in the closed Ðeld regions of
streamers or in the helmets. Raymond et al. also suggest
that settling is less important or unimportant in streamer
legs because of some form of mixing that refreshes the
material in the legs on a timescale of 1 day or less. We can
evaluate this suggestion by computing the time-to-height
relation for the Ñow in R2 and R3.
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FIG. 13.ÈTime-to-height ratio (solid lines), as computed according to
eq. (49), for cases A, D, and E from Table 2. Also plotted is the Ñow for the
same cases for comparison. Critical points in the Ñow speed are indicated
by Ðlled diamonds.

The time for a parcel of plasma to reach a given height, q,
is given by

q(r1)\
P
r0

r1
[dr/V2(r)] . (49)

This time is plotted in Figure 13 for examples A, D, and E,
along with the Ñow speed and the critical points, out to 5

It is seen that A and D proÐles lead to times of muchR
_

.
less than 1 day to reach 5 while E leads to times of moreR

_
,

than 1 day. The choice of 5 is not arbitrary ; above thisR
_height the plasma is e†ectively collisionless even in the high-

density plasma of streamers (Suess et al. 1999c). It was
reported in Raymond et al. (1998) that the gravitational
settling time in the helmet is a ““ few days.ÏÏ Given that result,
it appears that Ñow speeds like those in example E can lead
to signiÐcant gravitational settling while the other two
examples would not. The empirical Ñow speed inside
streamers has been reported to be rather low, similar to that
in E (e.g., Poletto et al. 2002), so it is possible that gravita-
tional settling will have to be examined in more detail. This
is beyond the scope of the present model and will entail a
solution of the multiÑuid equations like that described, for
example, by Hu, Esser, & Habbal (2000).

5. DISCUSSION OF SOLUTIONS

The Ðrst result we show is the evolutionary track of a
streamer under increasing temperature inside the helmet, in
Figure 8. There were several speciÐc results associated with
this. First, for a given width of the streamer as speciÐed in
terms of R, there is a maximum temperature and an associ-
ated maximum helmet height above which there is no solu-
tion. P68 interpreted this as the point beyond which the
magnetic Ðeld and plasma adjacent to the helmet could no
longer contain the helmet. We note, however, that for tem-
peratures above this point R will begin increasing, corre-

sponding to a decreasing helmet height and width. As the
temperature further increases, both the width and height
now decrease until the helmet disappears. This Ðnal helmet
disappearance is absolute and occurs at a temperature of
D3.5] 106 K in the q\ 1 case. We Ðnd that although the
result is parameter dependent, it is generally true that this
model predicts no helmet heights above 3.0 and anR

_absolute maximum temperature for the existence of a
helmet of D3.5] 106 K. However, this is a speciÐc result
for an isothermal helmet. First, it is possible for much
higher temperatures to exist in active regions within
helmets. Second, it may be possible for a streamer to exist in
the complete absence of a helmet.

The next result we show is the possible occurrence of
stagnation Ñow in the vicinity of the helmet cusp, depending
on the Ñow parameters. This is a result anticipated by

et al. (1999). Their solution was for solar wind ÑowVa� squez
in a predetermined magnetic Ðeld geometry that included
both the closed Ðeld lines in the helmet and open Ðeld lines
near and far from the helmet. They found fast-wind Ñow far
from the helmet, but the possibility of two solutions near
the helmet cusp where f @(r) is large. One of these solutions
was close to the fast-wind solution far from the helmet. The
other solution exhibited the stagnation Ñow. They note that
the stagnation Ñow can lead to locally signiÐcant gravita-
tional settling and an inÑuence on elemental abundances in
the resulting solar wind. Here we have investigated the con-
ditions under which stagnation Ñow exists, where we now
interpret this term to mean cases in which there is a local
maximum in in R2. Stagnation Ñow is found here toV2(r)occur only when the maximum value of km s~1V2(r) Z 30
and the helmet is domed rather than cusped. The absence of
stagnation in Figure 9 is due to the generally small Ñow
speeds. The strong stagnation in Figure 10 results from the
Ñow speed at the base always being greater than 50 km s~1
and the domed helmet with its associated locally large f @(r).
We expect the stagnation in Figure 10 would have disap-
peared for slightly larger than in example C, but a stand-T1ing shock appears in this case and we are unable to give a
quantitative solution. The stagnation in Figure 11 disap-
pears below Ñow speeds of D20 km s~1. Returning to the
model of et al. (1999), we see they have Ñow speedsVa� squez
that reach more than 100 km s~1 adjacent to the helmet.
Other multiÑuid slow solar wind models often have very
low Ñow speeds at the base of the corona and empirical
results suggest Ñow speeds less than 50 km s~1 inside the
brightness boundary below 2 (Poletto et al. 2002).R

_Therefore, the importance of stagnation cannot be clearly
decided at this time. It is possible, however, that stagnation
is only important, if at all, for very short and broad helmet
structures. A quantitative answer to this question awaits
multiÑuid models with greatly improved treatments of the
energetics of the Ñow.

Another issue we raise in ° 4 is the possible existence of
standing shock waves in R2. These occur in this model
because the Ñow starts out supersonic at the base or
becomes supersonic somewhere in R2 and then has to
match with subsonic Ñow in R3. There are strong empirical
results that the Ñow is subsonic in R3 (Poletto et al. 2002).
Weaker empirical results have not given any suggestion of
supersonic Ñow in R2. The possibility of supersonic Ñow in
R2 exists, however, because of the large values of f @(r) that
must occur in compact streamers. If the shocks occur, the
model described here implies a Ðnite change in andA1(r)
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at the shock. This is a consequence of neglecting theA2(r)magnetic Ðeld in R1 and computing only the average values
of the variables for any given height. Nevertheless, it implies
that the consequences of such a shock might be detectable,
buried inside the brightness boundary.

Finally, we brieÑy considered whether stagnation might
locally enhance gravitational settling and modify elemental
abundances in the solar wind. It is impossible to give any
detailed answer to this question without a multiÑuid model.
However, we computed the time-to-height proÐles for some
of the solutions we found and showed them in Figure 13.
These proÐles show that when stagnation occurs, the large
Ñow speeds around the maximum in R2 reduce theV2(r)advection times and imply that gravitational settling will be
of little importance. The main cases in which gravitational
settling looks to be important are when the Ñow speed is
small throughout R2. To understand when is smallV2(r)everywhere requires, again, a much more detailed analysis
of the energetics than is possible here.

6. DISCUSSION OF THE MODEL

This model, although geometrically simple, is seen to
retain the most important aspects of helmet containment
and the dynamics of Ñow inside the brightness boundary. Its
particular weaknesses are the simple treatment of energetics
and the assumption of a radial-brightness boundary. We
believe both of these weaknesses can be removed without
eliminating the geometric and mathematical simplicity of
the model.

The energetics is most simply addressed by expanding the
one-dimensional equations of motion (eqs. [1]È[9]) to
include thermal conduction, energy and momentum
sources, and/or multiple Ñuids (electron-proton gas, ions).
For example, a corresponding set of one-dimensional equa-
tions for a four-Ñuid turbulence-driven wind has been
solved by Hu et al. (2000), where the geometry has been
taken into consideration through a spreading function
deÐned as in equation (47), but without the coupling to
adjacent regions that we have described. Hu et al. solved the
equations by introducing time dependence, starting with an
arbitrary initial state, and allowing the Ñow to relax in time
to the steady state solution. Solution methods to this type
problem are described in detail by Hu et al. (2000) and Suess
(1982). The di†erence in solving the equivalent problem to
that described in equations (1)È(9) is small. The number of
equations is increased only through the coupling with R1.

It is possible to relax the restriction to a radial brightness
boundary because of the character of conditions in coronal
holes. Consider the geometry illustrated in Figure 14, which
is a generalization of that shown in Figure 3 to include a
nonradial brightness boundary and a new region R4 of
cross section R1, R2, and R3 are deÐned in the sameA4(r).way as in Figure 3, while R4 is imagined to be low-b
coronal hole Ñow. The outer boundary to R4 is imagined to
be radial, a choice guided by the numerical results shown in
Figure 2. In coronal hole Ñow, b > 1 and it is possible to
completely neglect the Ñow to O(1) when computing the

FIG. 14.ÈGeometry proposed for the streamer model to relieve the
restriction of a radial-brightness boundary. A1, A2, and A3 are deÐned in
Fig. 3, and A4 is introduced here, outside the brightness boundary (dashed
lines).

transverse pressure balance. This means that the brightness
boundary between R4 and R2 or R3 satisÐes the pressure
balance given by

B4(r)2
8n

K
ryrh

\ B2(r)2
8n

] 2N2(r)kT2(r) , (50a)

B4(r)2
8n

K
rzrh

\ B3(r)2
8n

] 2N3(r)kT3(r) . (50b)

Equation (50) gives and the shape of the brightnessA4(r)boundary without resorting to a full multidimensional
model. The solution to the expanded set of steady state
equations would involve an additional iteration, since it
would be impossible to write down the critical point condi-
tions in R3 alone as was done here in ° 3.1. Therefore, it
probably would be easiest to solve these expanded equa-
tions in the same way as suggested above for incorporating
a generalized energy equation.

7. SUMMARY AND CONCLUSIONS

We have described a simple one-dimensional analytic
model of streamer helmets (the closed magnetic Ðeld region)
and Ñow between the helmet and the streamer brightness
boundary. This model is able to recover the shape of the
helmet, show the evolution of the helmet under a slowly
increasing temperature, and show the maximum heights
and widths of the helmet. It is also able to recover the
stagnation Ñow that can occur in the vicinity of the helmet
cusp and show under what conditions stagnation Ñow
exists. Finally, we describe how this model can be easily
generalized to remove its most important restrictions.

We would like to thank Roger Kopp for suggesting this
approach to the problem of streamer and helmet modeling.
This work was supported by the NASA Ulysses/SWOOPS
project and by a NASA Living With A Star data analysis,
theory, and modeling grant.

REFERENCES

Aellig, M. R., Lazarus, A. J., & Steinberg, J. T. 2001, J. Geophys. Res., 28,
2767

Gary, G. A. 2001, Sol. Phys., 203, 71
Hu, Y.-Q., Esser, R., & Habbal, S. R. 2000, J. Geophys. Res., 105, 5093
Kopp, R. A., & Holzer, T. E. 1976, Sol. Phys., 49, 43
Leer, E., & Holzer, T. E. 1990, ApJ, 358, 680

Li, J., et al. 1998, ApJ, 506, 431
Parker, E. N. 1963, Interplanetary Dynamical Processes (New York :

Interscience)
Pneuman, G. 1968, Sol. Phys., 3, 578
Poletto, G., Suess, S. T., Biesecker, D. A., Esser, R., G. Gloeckler, Ko,

Y.-K., & Zurbuchen, T. H. 2002, J. Geophys. Res., in press



1288 SUESS & NERNEY

Raymond, J., Sulieman, R., van Ballegooijen, A., & Kohl, J. 1998, in Proc.
31st ESLAB Symp., Correlated Phenomena at the Sun, in the Helio-
sphere, and in Geospace (ESA SP-415 ; Noordwijk : ESA), 383

Steinolfson, R. S., Suess, S. T., & Wu, S. T. 1982, ApJ, 255, 730
Suess, S. T. 1982, ApJ, 259, 880
Suess, S. T., Gary, G. A., & Nerney, S. F. 1999a, in AIP Conf. Proc. 471,

Solar Wind Nine, ed. S. R. Habbal, R. Esser, J. V. Hollweg, & P. A.
Isenberg (New York : AIP), 247

Suess, S. T., & Nerney, S. F. 1999, in Proc. 9th European Meeting on Solar
Physics : Magnetic Fields and Solar Processes (ESA SP-448 ; Noordwijk :
ESA), 1101

Suess, S. T., & Smith, E. J. 1996, Geophys. Res. Lett., 23, 3267
Suess, S. T., Wang, A.-H., Wu, S. T., & Nerney, S. F. 1999b, Space Sci. Rev.,

87, 323
Suess, S. T., Wang, A.-H., Wu, S. T., Poletto, G., & McComas, D. J. 1999c,

J. Geophys. Res., 104, 4697
A. M., van Ballegooijen, A. A., & Raymond, J. C. 1999, in AIPVa� squez,

Conf. Proc. 471, Solar Wind Nine, ed. S. R. Habbal, R. Esser, J. V.
Hollweg, & P. A. Isenberg (New York : AIP), 243

Wang, A.-H., Wu, S. T., Suess, S. T., & Poletto, G. 1998, J. Geophys. Res.,
103, 1913


